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Thermocapillary convection in three-dimensional rectangular finite containers with 
rigid lateral walls is studied. The upper surface of the fluid layer is assumed to be flat 
and non-deformable but is submitted to a temperature-dependent surface tension. The 
realistic ‘no-slip’ condition at the sidewalls makes the method of separation of 
variables inapplicable for the linear problem. A spectral Tau method is used to 
determine the critical Marangoni number and the convective pattern at the threshold 
as functions of the aspect ratios of the container. The influence on the critical 
parameters of a non-vanishing gravity and a non-zero Biot number at the upper 
surface is also examined. The nonlinear regime for pure Marangoni convection 
(Ra = 0) and for Pr = lo4, Bi = 0 is studied by reducing the dynamics of the system to 
the dynamics of the most unstable modes of convection. Owing to the presence of rigid 
walls, it is shown that the convective pattern above the threshold may be quite 
different from that predicted by the linear approach. The theoretical predictions of the 
present study are in very good agreement with the experiments of Koschmieder & Prahl 
(1990) and agree also with most of Dijkstra’s (1995a, 3) numerical results. Important 
differences with the analysis of Rosenblat, Homsy & Davis (19823) on slippery walls 
containers are emphasized. 

1. Introduction 
When a fluid layer is heated from below, it is well known that convection sets in after 

a critical temperature difference is reached between the bottom and the top of the layer. 
In a one-component fluid, the appearance of motion results either from gravity effects 
(Rayleigh-BCnard problem) or from thermocapillary phenomena (Marangoni con- 
vection). Since the celebrated papers by BCnard (1900), Rayleigh (1916), Pearson 
(1958) and Nield (1964), the problem of thermogravitational and thermocapillary 
instabilities has been of growing interest (see, for instance, Koschmieder 1993 or 
Platten & Legros 1984). In most works the fluid layer is, however, assumed to be of 
infinite horizontal extent. This hypothesis allows the separation of variables and the 
linear stability problem reduces to an eigenvalue problem for a system of ordinary 
differential equations in the vertical coordinate. This problem has been studied 
thoroughly for several different boundary conditions for both the velocity and 
temperature at the top and the bottom of the fluid layer. However, since experiments 
can only take place in finite containers, the comparison between theoretical and 
experimental results is not always an easy task as sidewalls play an important role in 
small boxes. 

The study of the effects of lateral walls in boxes with large aspect ratios is based on 
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the ‘envelope formalism’ (see for instance Manneville 1990) and will not be considered 
here. We focus instead on instabilities in boxes with small aspect ratios. In this case, 
the spatial horizontal pattern of the convective cells is no longer degenerate as in 
infinite layers but is determined by the lateral confinement of the sidewalls. 

A linear study of pure gravity-driven instability in rectangular containers with rigid 
horizontal and lateral walls was presented by Davis (1967). He predicted the 
appearance at threshold of ‘finite rolls (cells with two non-zero velocity components 
dependent on all three spatial variables) with axes parallel to the shorter side’. These 
‘finite rolls’ have been criticized by Davies-Jones (1970) and by Luijkx & Platten 
(1 98 1) who considered more realistic three-dimensional solutions. 

The problem of thermocapillary convection in finite boxes was first considered by 
Rosenblat, Davis & Homsy (1982a) and Rosenblat, Homsy & Davis (19823). These 
authors presented a linear and nonlinear study of thermoconvection due to temperature 
induced surface tension variations in circular and rectangular containers. However, 
their work is based on the ‘slippery’ lateral walls assumption. This boundary condition 
for the velocity is not realistic but enables the linear problem to be solved by using the 
method of separation of variables, at least for adiabatically insulated sidewalls. The 
nonlinear approach proposed by these authors concerns only roll-patterns but an 
extension was proposed by Dauby et al. (1993) who examined the possibility of the 
occurrence of hexagonal convective cells. 

More recently Winters & Plesser (1988), van de Vooren & Dijkstra (1989) and 
Dijkstra (1992) have examined pure Marangoni convection with a ‘no-slip condition’ 
at the lateral boundaries. The velocity actually vanishes on the lateral walls and the 
method of separation of variables does not work. Their approaches are based on finite- 
element or finite-volume methods but are restricted to two-dimensional containers. 

Since we submitted the first version of this work, Dijkstra has also considered 
Marangoni convection in three-dimensional rigid square boxes and he has obtained 
interesting results by using powerful numerical methods (Dijkstra 1995 a-c). The first 
paper (1995~) is devoted to a linear study of stability. The second is a study of 
nonlinear convection in square containers with aspect ratios smaller than 6. In the third 
work, larger-aspect-ratio containers are investigated and hexagonal convection is 
shown to be possible in sufficiently large vessels. The results of Dijkstra will be 
compared with ours and used as validation of our method. 

In the present work, we study the problem of thermocapillary convection in the 
general case of three-dimensional rectangular containers with realistic rigid (no-slip) 
lateral walls (see also Dauby & Lebon 1994; Dauby, Lebon & Colinet 1996). It is 
assumed that the upper surface of the layer is flat and non-deformable and that the 
lateral walls are adiabatically insulated. We consider both linear and nonlinear 
analyses. The dependence of the linear results on non-zero Rayleigh and Biot numbers 
is also examined. In the nonlinear study, the Rayleigh and Biot numbers are fixed to 
0 and the Prandtl number is equal to lo4, which is a good approximation for the 
silicone oils used in many experiments. 

The structure of the paper is as follows. In the next section, the basic equations are 
given. The linear analysis of the problem is developed in 93  while the nonlinear 
approach is treated in 94. Conclusions are drawn in the last section. Some technical 
points are developed in Appendices A and B. 
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2. Basic equations 
The system consists of a thin viscous fluid layer filling a rectangular container. The 

thickness of the layer is equal to d and the length and width of the container are a, d 
and a, d,  respectively (a ,  and a, are the aspect ratios). The surface tension at the upper 
free surface is assumed to be temperature dependent. The fluid is heated from below. 
It is well known that motion sets in after the vertical temperature gradient has reached 
a critical value. 

In the reference state, the fluid is at rest and heat propagates by conduction only: the 
corresponding velocity and temperature fields are given by u, = 0, T, = TB - ( A T / d )  z ;  
u = (u, u, w) is the velocity vector and T the temperature field; subscript r refers to the 
reference state, TB is the temperature of the fluid at the bottom of the box and A T  is 
the temperature drop between the bottom and the top of the layer. The z-axis is vertical 
and oriented from the bottom to the top of the box. 

The velocity perturbations u = (u, u, w) and the temperature perturbation 8 with 
respect to the conductive solution are governed by the Boussinesq nonlinear equations : 

v-u = 0, (2.1) 

- = w + V2B. 
dB 
dt 

Equations (2.1)-(2.3) are written in dimensionless form with space, time and 
temperature scaled by d,  P l K  and AT, respectively; p is the dimensionless pressure and 
e, the unit vector along the z-axis. The material time derivative is denoted by 
dldt = a/at + v . V .  The Rayleigh number Ra is defined by 

a g A T b  
Ra = > 

KV 

where 01 is the coefficient of volumetric expansion and g the acceleration due to gravity; 
v is the kinematic viscosity of the fluid and K its heat diffusivity. The Prandtl number 
Pr is given by 

V 
Pr = - 

K ’  

The boundary conditions are the following. 

The bottom of the box is rigid and perfectly heat conducting so that 

v = B = O  at z = O .  (2.6) 

The upper surface of the fluid is assumed free, plane and non-deformable. The surface 
tension [ is supposed to be a linear function of the temperature: 

t ( T )  = f (T , ) -y (T -  GI. (2.7) 
T, is a reference temperature, say the temperature of the ambient surroundings and 
y = -af/aT is a constant which is positive for most fluids. 

At the top of the layer, heat is transferred from the liquid to the ambient gas 
according to Newton’s cooling law 

4 = MT, - Test), (2.8) 
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where q is the normal component of the heat flux vector at the surface of the fluid, at 
temperature T,; qzt is the constant temperature of the external medium and h the heat 
transfer coefficient assumed to be constant. The mathematical expressions for the 
boundary conditions at the upper surface are (Pearson 1958; Nield 1964; Rosenblat et 
al. 1982a, b) 

w = O  at z = 1 ,  (2.9) 

ae 
-+BiB=O aZ at z =  1, (2.10) 

(2.11) 

where V ,  = (a/ax, a/ay) is the horizontal gradient and Ma the Marangoni number 
defined by 

y A T d  
Ma=-. (2.12) 

P*K 

The symbol Bi = hd/h stands for the non-dimensional heat transfer coefficient (the 
so-called Biot number), with h the heat conductivity of the fluid. In (2.12), p is the mass 
density. 

The sidewalls are adiabatically insulated and rigid. The corresponding boundary 
conditions for velocity and temperature are 

(2.13) 
ae 

u = v = w = - = O  at x=O,a 1’ ax 

ae 
aY 

(2.14) u = v = w = - = O  at y = O a  
3 2’ 

3. Linear stability problem 
The linear stability problem consists in determining the critical value of the 

Marangoni or Rayleigh number above which convection sets in. This is achieved by 
first linearizing equations (2.1k(2.3). The boundary conditions (2.6), (2.9)-(2.1 I), 
(2.13) and (2.14), which are linear, keep the same form. Then, an exponential time 
dependence of the form exp(d)  for all the variables is introduced in the equations, 
which results in an eigenvalue problem for the Marangoni number, the Rayleigh 
number or the growth rate CT: 

v * v  = 0,  (3.1) 

V2v-Vp+RaOe,  = Pr-lcrv, (3 4 
v2e + w = (To. (3.3) 

Since we are mainly interested in surface-tension driven instability, we will consider in 
this section that the Rayleigh number is fixed and we will determine the critical 
Marangoni number characterizing marginal stability. Moreover, the principle of 
exchange of stability is assumed to hold. It is supposed that the growth rate of the most 
dangerous mode passes from real negative to real positive values as the control 
parameter is increased above its critical value. This assumption has been shown to be 
valid for pure buoyancy instability (Pellew & Southwell 1940) owing to the self- 
adjointness of the relevant equations. Exchange of stability was also proved numerically 
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to hold in the case of pure thermocapillary (Vidal & Acrivos 1966) and coupled 
buoyancy and thennocapillary (Takashima 1970) instabilities in infinite boxes. For 
finite containers, no demonstration has been proposed up to now. Nevertheless, 
Rosenblat et al. (1982a, b) have taken this principle for granted in the case of slippery 
lateral boundaries. Moreover, numerical works by Dijkstra (1992, 19953) show that no 
Hopf bifurcations occur at threshold in rigid containers. So the assumption of 
exchange of stability is made here and both the real and imaginary parts of the 
perturbations growth rate are assumed to vanish at the threshold. 

In their papers, Rosenblat et al. use the method of separation of variables to study 
the linear Marangoni instability in a container with slippery walls. As shown by Pellew 
& Southwell (1940), this method cannot be applied when the sidewalls are rigid and a 
numerical resolution of the eigenvalue problem must be considered. 

3.1. The numerical method 

The numerical method to be used here is the so-called spectral Tau method (Canuto 
et al. 1988), which is a refinement of the well-known Galerkin method (Finlayson 1972). 
Following this approach, the unknown fields are expanded in series of trial functions 
which form a complete set and satisfy some of the boundary conditions, the so-called 
‘essential’ boundary conditions. Truncated series are introduced in the field equations 
as well as in the ‘natural’ boundary conditions which are not a priori satisfied by the 
trial functions. Then these equations and natural boundary conditions are projected on 
the same trial functions, i.e. the equations and natural boundary conditions are 
multiplied by the trial functions before being integrated over the fluid volume. The 
purpose of this procedure is to replace the set of differential equations by a set of 
algebraic equations. 

In the present problem, the unknowns v(u, v, w) and 0 are written in the form 

where N,, N y  and N, are integers; vck = (uCk, 0, wek),  vck = (0, v : ~ ,  wek) and Bijk are 
trial functions which are specified in Appendix A; Aijk,  Bijk and Cijk are unknown 
constants. The total number of trial functions or degrees of freedom is thus given by 
3 x N, x N y  x N,. 

The unknown pressure p is not given an explicit decomposition because the pressure 
gradient disappears in the final equations, thanks to integration by parts and boundary 
conditions. 

The expressions vck = (uck, 0, wek,> and vck = (0, vck ,  wek,> correspond to the ‘finite 
rolls’ solutions of Davis (1967), i.e. to modes of convection for which one of the two 
horizontal components of the velocity vanishes but whose non-zero components are 
actually functions of the three spatial coordinates. The upper indices X and Y define 
the ‘x-rolls ’ and ‘ y-rolls ’ of Davis which are parallel to the y- and x-axes, respectively. 
Let us mention that these finite rolls have been criticized by different authors (Davies- 
Jones 1970; Luijkx & Platten 1981; Platten & Legros 1984) who showed that these 
modes of convection can never be exact solutions of the problem. In the present work, 
we do not consider separately x-rolls and y-rolls, as done by Davis, but we decompose 
the solution into a sum of such rolls. 

The precise form of the trial functions and some further details on how to obtain the 
algebraic eigenvalue problem are given in Appendix A. Note only that, owing to the 
symmetry between the ‘length’ and the ‘width’ of the box, the solutions of the 
eigenvalue problem may be separated into four classes which are characterized by the 
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parity of the unknown fields with respect to the coordinates x and y .  The four classes 
will be denoted EE, EO, OE and 00. The first and second letter of each of these 
symbols respectively refers to the parity of the x- and y-dependences of the temperature 
field. Note also that the normalization condition that has been used in the 
determination of the algebraic eigenvectors is written as 

C lei1 = 1, (3.5) 
i 

where 0, represents the values of the temperature field at the nine points chosen at mid- 
depth of the container and with x-coordinates equal to 0, -+a,, -a, and y-coordinates 
equal to 0, -fa,, - a,. This normalization condition is of importance for the nonlinear 
analysis developed in 94. 

3.2. Results 

Before considering three-dimensional containers, we have checked our method by 
comparing our two-dimensional results with previous approaches based on other 
techniques. 

Table 1 gives a comparison with the works of Winters & Plesser (1988), van de 
Vooren & Dijkstra (1989) and Dijkstra (1992). The convergence of our algorithm is 
also examined. The agreement between the present work and the previous ones is 
excellent as soon as N ,  x N, is equal to 5 x 5. The convergence is also very satisfactory 
since the difference between the results with N,xN,  = 8 x 8  and those with 
N, x N,  = 5 x 5 is always smaller than 0.10 YO. The fast convergence with a rather small 
number of trial functions is one of the principal improvements of the present work for 
two-dimensional containers with respect to the linear approaches given by Winters & 
Plesser (1988), van de Vooren & Dijkstra (1989) and Dijkstra (1992). Clearly, the 
decomposition in terms of Chebyshev polynomials is responsible for this fast 
convergence. 

The results corresponding to the more realistic problem of three-dimensional 
rectangular containers are now analysed. As a preliminary, let us discuss the problem 
of the convergence of our method. In table 2 are found the numerical results 
corresponding to different values of the Rayleigh and Biot numbers and different 
numbers of trial functions. Two couples of aspect ratios are considered, namely 
(a,, a,) = (4,2) and (a,, a,) = (6,5). It is observed that the critical parameters evaluated 
with N,  x N ,  x N ,  = 6 x 6 x 6 vary by less than 0.035 YO with respect to the values 
corresponding to N ,  x N,  x N,  = 5 x 5 x 5. Therefore, the next calculations are 
performed with N, x N,  x N,  = 5 x 5 x 5.  

Table 3 presents the values of the critical Marangoni number for some aspect ratios 
and for zero Rayleigh and Biot numbers. Figure 1 is a three-dimensional picture of Ma,  
as a function of the aspect ratios a,  and a, (Ra = Bi = 0). The calculations have been 
performed for aspect ratios varying by discrete steps of 0.2. The critical Marangoni 
number is seen to be a globally decreasing function of the lateral dimensions of the 
containers. When both a, and a, become greater and greater, Ma, tends to 79.607, 
which is the value found for an infinite box. However, if only one of the two aspect 
ratios becomes infinite, the other one being fixed, then the critical Marangoni number 
tends to a value which is greater than that for infinite boxes. A similar behaviour was 
found by Davis (1967) for pure gravity driven convection. It is also interesting to note 
that the decrease of Ma,  consists of portions of concave surfaces. The intersections of 
these portions describe, in fact, the appearance or disappearance of convective cells, or, 
more precisely, these intersections correspond to the transitions from one class of 
parity for the eigenmode (EE, EO, OE, 00) to another. 
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D-L D-L D-L 
a1 Bi W-P vdV-D D 4 x 4 5 x 5 8 x 8 A5-4% As-s 'Yo 

1 1 212.27 - 212.82 210.99 211.97 212.19 0.46 0.10 
2 1 145.76 - 146.41 145.65 145.74 145.75 0.067 0.0069 
3 1 127.00 - 127.54 126.80 126.95 126.98 0.12 0.024 
4 20 - 786.67 792.54 787.62 788.80 788.84 0.15 0.0050 

TABLE 1. Critical Marangoni number for different aspect ratios a, and Biot numbers Bi; Ra = 0. The 
results of Winters & Plesser (1988) (W-P), van de Vooren & Dijkstra (1989) (vdV-D) and Dijkstra 
(1992) (D) are reported in columns 3-5. The following three columns (D-L) present our results with 
the different values of N, x N, indicated in the first cell. The last two columns give the differences in 
per cent between columns 5 x 5 and 4 x 4 and columns 8 x 8 and 5 x 5 respectively. Note that the 
definition of the Marangoni number in van de Vooren & Dijkstra (1989) and Dijkstra (1992) is 
different from ours but the values given here have been adapted to our definition. 

(a,,%) Ra Bi 4 ~ 4 x 4  5 ~ 5 x 5  6 ~ 6 x 6  

(4, 2) 0 0 97.171 97.219 97.228 0.0093 
(4, 2) 300 0 63.766 63.865 63.871 0.0094 
(4, 2) 0 10 479.91 481.16 481.33 0.035 
(6, 5 )  0 0 83.430 83.475 83.477 0.0024 

TABLE 2. Convergence of the critical Marangoni number for different values of the Rayleigh and Biot 
numbers. The numbers N,, N , ,  N, of trial functions are given in the first cell of each column. The last 
column gives the differences in per cent between columns 6 x 6 x 6 and 5 x 5 x 5 .  

a,\% 2 3 4 5 6 7 

2 111.48 101.18 97.219 95.484 94.622 94.144 
3 101.18 91.080 88.770 88.034 88.293 87.092 
4 97.219 88.770 85.771 84.551 84.462 83.453 
5 95.484 88.034 84.551 83.772 83.475 82.484 
6 94.622 88.293 84.462 83.475 83.178 82.184 
7 94.144 87.092 83.453 82.484 82.184 81.976 

TABLE 3. Values of the critical Marangoni number for different aspect ratios and for Ra = Bi = 0 
( N ,  x N ,  x N, = 5 x 5 x 5) .  

The study of the number and the form of the convection cells is performed by using 
figure 2. This picture is a map of the modes of convection at threshold: to each pair 
of aspect ratios (a,,a,) is associated a small square whose relative darkness is 
determined by the class 00, OE, EO or EE to which the critical solution pertains. 
Clearly, the instability is degenerate for boxes whose aspect ratios are located on the 
intersection of zones of different darkness since, in this case, several distinct convective 
modes become simultaneously unstable. The linear results for square containers are 
presented in figure 3. The different portions of the decreasing Ma, function are clearly 
exhibited as well as the mode switching. Note that not only the smallest eigenvalue Ma, 
has been plotted, but also some other curves corresponding to the successive 
eigenvalues. 

A precise interpretation of the map of convective patterns at threshold (figure 2) is 
not completely straightforward and requires the explicit representation of the 
convective cells for at least some values of the aspect ratios. As an example, let us 
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FIGURE 1. Critical Marangoni number as a function of the aspect ratios for Ra = Bi = 0. 

consider a container with (a,,a,) = (6.6, 5.2) in the case of zero Rayleigh and Biot 
numbers. For this container, the solution belongs to the EE class as shown in figure 2. 
Various features of the flow in this box at threshold are found in figure 4. We show the 
horizontal velocity vector and the temperature field at the top surface and also the 
vertical velocity u’ at mid-depth of the layer. We then show the velocity components u 
and w in the vertical plane y = 3.9 as well as the velocity component u in this plane. It 
is clearly seen that convection sets in in the form of four rolls with axes parallel to the 
shorter sides of the container. 

To analyse figure 2, note first that this picture is ‘symmetric’ with respect to the line 
a, = a, and only the region with a, < a2 will be studied in detail. Furthermore, figure 
2 is seen to be made up of different strips with distinct colours. We will now see that 
each strip corresponds to a flow pattern taking the form of convective rolls which are 
usually parallel to the shorter sides of the box. For square boxes, rolls parallel to both 
sides may possibly combine to produce a more symmetric structure. 
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1 2 3 4 5 6 7 8  9 

a1 

FIGURE 2.  Map of the convective modes at threshold for Ra = Bi = 0. Crosses indicate boxes 
which are considered in detail in the nonlinear analysis ($4.4). 

2 3 4 5 6 I 8 9 

a1 

FIGURE 3. Critical Marangoni number as a function of the aspect ratio for square boxes 
(Ra = Bi = 0). The curves corresponding to several successive eigenvalues are also plotted and the 
parity of the eigenmodes is indicated. 
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FIGURE 4. Representations of the flow at threshold in a box of aspect ratios (ul ,  a,) = (6.6, 5.2). 
The Rayleigh and Biot numbers are zero. 

First, we consider boxes for which the aspect ratios are ‘quite’ different; the case of 
square or quasi-square containers will be studied later on. From figure 4 and from 
representations of the flow for other boxes with aspect ratios in the same EE zone, it 
may be inferred that the white strip in the neighbourhood of a, = 6.2 in figure 2 
corresponds to a convective structure in the form of four rolls parallel to the shorter 
sides of the container. Similarly, the dark grey strip centred on a, = 4.8 and the white 
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FIGURE 5. Representation of the flow at threshold for several rectangular containers (Ra = Bi = 0). 
The iso-values of the vertical velocity w at mid-depth of the fluid layer are represented. The aspect 
ratios are: (a)  (3 .2 ,  l), (b) (4.8, 2.7) ,  ( c )  (4.0, lS),  (d)  ( 3 . 2 ,  2 .5) ,  (e)  (4.8, 3.2) .  

strip centred on a, = 3.2 describe, respectively three (figures 5b and 5e)  and two 
(figures 5a and 5 d )  rolls parallel to y. There are also five rolls near a, = 8.2. The 
horizontal light grey zone with a, = 1.6 corresponds to a unique convective roll parallel 
to the x-axis (figure 5c), that is parallel to the larger sides of the box, and in the small 
light grey area near ( a , , ~ , )  = (5.6, 5.2), convection sets in in the form of three rolls 
parallel to the larger sides of the container. 

In square containers, the convective structures are the following. For very small 
cavities (a,  < 2.2), a degenerate solution is found in which one roll parallel to y 
and one roll parallel to x become simultaneously unstable at threshold. For a, = 2.5 
(EE zone), a unique square cell is observed (figure 6a). For a, = 4.4, there is also 
a square cell (figure 6b)  but the picture is somewhat different from figure 6(a). As a 
matter of fact, a cell similar to that corresponding to a, = 2.6, but rotated by 45", is 
seen in the middle of figure 6(b)  and the flow in the corners of the box is very weak. 
In connection with these pictures, it is interesting to wonder how square cells can be 
built in infinite layers. As recalled by Koschmieder (1993), the (x, y)-dependence of the 
vertical velocity in square cells can be written either as the sum (w = (coskx 
+ cos ky)  W(z)) or as the product ( w  = cos 2-1/2 kx cos 2-l" ky W(z)) of the functions 
of x and y which define the vertical velocities corresponding to two sets of 
perpendicular rolls. Figure 6(a)  is made up by the sum of two rolls perpendicular to 
x and two rolls perpendicular to y while figure 6(b)  represents, rather, the product of 
such rolls. In both cases, the rolls parallel to both sides combine to give rise to a 
symmetric structure. For larger boxes (dark and light grey areas near a, = 4.8), the 
instability is degenerate and either three rolls perpendicular to x or three rolls 
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FIGURE 6. Representation of the flow at threshold for several square containers (Ra = Bi = 0). The 
iso-values of the vertical velocity w at mid-depth of the fluid layer are represented. The aspect ratios 
are: (a) 2.5 ,  (b) 4.4, (c) 4.7, ( d )  5.9, (e) 6.8, cf> 8.0. 
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perpendicular to y appear (figure 6c). The pattern for the black 00 zone in the 
neighbourhood of a, = 5.9 is given in figure 6 ( d )  and presents an 'antisymmetric' 
structure, which could be seen as the 'product ' of three rolls parallel to x and three rolls 
parallel toy. In the white area in the vicinity of a, = 6.2, the convective structure (figure 
6e)  consists of one square cell (similar to figure 6a,  with opposite sign) in the middle 
of the box but a ring of sinking fluid is also observed along the sidewalls. For still larger 
values of the aspect ratio (light and dark grey zones near a, = 8), one observes five rolls 
parallel to any side of the container (figure 6 8 .  For quasi-square containers, the 
convective cells are similar to these which appear in the square cavities but slight 
deformations are observed. 

The degeneracy of the instability in square boxes may be related to the symmetry of 
the convective patterns. For EE solutions (figures 6a,  6 b  and 6e) ,  the convective 
structure is clearly invariant for a reflection about the medians of the box and also for 
a rotation of 90" around the centre of the container. Similarly, the 00 solutions (figure 
6 d )  have the same symmetry since the linear convective pattern is defined to within a 
change of sign. In both cases, the instability is non-degenerate and the critical 
eigenvalue is simple. On the other hand, when the eigenvector is an element of the EO 
or OE class, the structure is still invariant for the reflections with respect to the medians 
but the invariance is lost for a rotation of 90" of the pattern. In fact, for square 
containers, the EO or OE modes are simultaneously unstable and the EO pattern may 
be obtained by rotating the OE one by 90", and vice versa. In the light and dark grey 
zones of figure 2, the instability is degenerate and the eigenvalue has an algebraic 
multiplicity equal to 2. 

A tentative physical interpretation of the geometrical nature of the convective cells 
at threshold in rectangular containers may be the following. The selection of the 
convective pattern is based on a balance between two arguments. The first one put 
forward by Davis (1967) and also taken up by Koschmieder (1993) states that, owing 
to dissipation at the rigid walls, a structure with rolls parallel to the shorter sides of the 
container dissipates less kinetic energy than a structure consisting of rolls parallel to the 
longer sides of the box. For this reason (Chandrasekhar 1961), the pattern with rolls 
parallel to the shorter sides is more likely to appear in experiments. The second 
argument which enables us to explain our results is the fact that the system prefers a 
structure for which the rolls are not compressed too much or dilated but have a 
dimension more or less equal to the dimension they would have in an infinite layer. For 
zero Biot and Rayleigh numbers, the critical wavenumber in infinite layers is about 2 
and the width of the rolls is more or less equal to 1.6. Consider for instance a box with 
(a,,a,) = (5 ,  3.2). This box may be filled up with three rolls parallel to y or with two 
rolls parallel to x. In both cases, the width of the rolls is about the 'optimal' value 1.6. 
The argument of dissipation along the walls will then impose the structure with three 
rolls parallel to the shorter sides of the container. In a box with (al, a,) = (5.7,5.2), three 
rolls parallel to the larger sides of the container can be observed because the rolls 
parallel to y would not present an optimal width. All the results represented in figure 
2 may be explained by using these two arguments. Of course, for large values of the 
aspect ratios, the argument about the width of the rolls becomes less relevant since the 
box can always be filled up with rolls of nearly optimal dimension. For this reason, the 
areas describing rolls parallel to the longer sides of the containers tend to disappear in 
large enough vessels. Let us also add that rolls parallel to each side may combine to 
form square or quasi-square cells in the neighbourhood of the diagonal a,  = a,. 

At this stage, it is interesting to compare our results with those of Dijkstra (1995a). 
Although both results are quite similar, our calculations are a bit more precise. For 
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instance, in a square box with aspect ratio 4, Dijkstra gets the value 86.27 for the 
critical Marangoni number by using about 5 x 163 z 2 x lo4 degrees of freedom (see 
Dijkstra’s table 1). With N ,  = N ,  = N ,  = 5 (number of degrees of freedom = 
3 x N ,  x N ,  x N, = 3 x 53 = 379 ,  we obtain Ma, = 85.771. This value is highly reliable 
since for (Nz,  N u ,  N,) equal, respectively, to (6, 6, 4), (7, 7, 5), and (8, 8, 6), we found 
the values 85.718, 85.771 and 85.775. This small lack of precision in Dijkstra’s 
approach has no influence in small boxes where the successive eigenmodes bifurcate far 
from each other, but becomes important in larger boxes. For instance, Dijkstra missed 
the small 00 areas of figure 2 and the pattern presented in his figure 3(g) does not 
correspond to the first linearly unstable eigenmode; the most unstable mode looks like 
our figure 6(d). 

We would also like to mention that some patterns given by Dijkstra (1995a) are in 
fact not so different from one another as they may appear at first glance. For instance, 
his figures 3 (d)-3 (f) (boxes of aspect ratios 4.5, 5 and 5.5) correspond in our work to 
degenerate eigenmodes of classes EO and OE and the unique convective structure 
looks like our figure 6(c) (box of aspect ratio equal to 4.7; three convective rolls 
parallel to any side of the container). We think that Dijkstra’s pictures look different 
from one another and also from our figure 6(c) because they are in fact some 
superposition of the two eigenmodes EO and OE. 

We now compare our work with the celebrated paper by Rosenblat et al. (19826) 
who used the simplified boundary condition of slippery lateral walls. First of all, note 
that, with realistic no-slip lateral walls, the critical Marangoni number is systematically 
larger than the value 79.607 characterizing the instability in non-bounded domains. In 
the paper of Rosenblat et al. (1982b), this value 79.607 was found for many finite 
boxes, which is not physically realistic. 

It is also interesting to compare our map of critical modes (figure 2) with the 
corresponding result of Rosenblat et al. (19826) (see their figure 7). Although the two 
pictures look quite different, some interesting similarities emerge. Actually, the 
different strips corresponding to a fixed number of rolls also appear in the picture of 
Rosenblat et al., although if the borders of their ‘strips’ are more jagged. Indeed, the 
critical mode in containers with a, z irnn (or a2 z inn) is always the mode (m, 0) (or the 
mode (0 ,n))  and this mode consists of m rolls parallel to y (or n rolls parallel to x). 
However, a difference exists between rigid and slippery walls because the strips 
corresponding to rolls parallel to the longer sides of the box do not disappear in large 
slippery boxes. This result is not surprising because, as in rigid boxes, the rolls always 
try to have an optimal width if the sidewalls are assumed slippery. However, in this 
case, no energy is dissipated along the walls and the rolls can therefore be found 
parallel to any border. 

Another difference between both kinds of containers is that, in figure 7 of Rosenblat 
et al., some intermediate regions exist between the strips corresponding to pure rolls. 
Moreover, within each particular domain of their figure 7, the convective pattern is 
always self-similar and the only modification of the pattern within one domain is some 
dilation or contraction. In our figure 2, the different strips are contiguous and the 
convective pattern varies continuously within each strip. 

The influence of non-zero Rayleigh and Biot numbers has also been considered in 
our analysis. In particular, the linear approach of the stability problem has been carried 
out for R a  = 300, Bi = 0 and for Ra = 0, Bi = 10. As expected, an increase of R a  
corresponds to a decrease of the critical Marangoni number. Another relevant result 
is the fact that the map of the modes of convection obtained for a non-zero Rayleigh 
number is nearly completely similar to that of figure 2. This means that gravity has 
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nearly no influence on the selection of the linear convective pattern. In the case of 
infinite layers, a corresponding result is well known (Nield 1964; Lebon & Perez- 
Garcia 1980) since the critical wavenumber is nearly independent of the Rayleigh 
number. One has also observed that by increasing the Biot number, the critical 
Marangoni number grows. The map describing the convective patterns for Bi = 10 is 
also very similar to that for Bi = 0 (figure 2) but with the important restriction that the 
transitions between the different zones occur for smaller values of the aspect ratios : the 
map for Bi = 10 can be drawn by ‘compressing’ along both axes the map given in 
figure 2. This result may be related with the fact that, in infinite layers, the critical 
wavenumber decreases if Bi is increased (Nield 1964; Lebon & Perez-Garcia 1980). A 
physical interpretation of this tendency was proposed by Nield (1964): when Bi is not 
zero, a larger temperature gradient is necessary to cause instability. More energy must 
be dissipated and smaller cells appear. 

4. Nonlinear Marangoni convection 
4.1. The method of resolution 

To account for the evolution of the convective pattern above threshold, we follow a 
method first introduced by Eckhaus (1965). The same technique was used by Rosenblat 
et al. (1982a, b)  in their nonlinear approach to Marangoni convection in slippery boxes 
and by Parmentier et al. (1996) in the case of horizontally infinite boxes. Some general 
considerations on this nonlinear approach to convection may be found, for instance, 
in Manneville (1990). Note also that the adjoint linear eigenvalue problem is required 
to apply the method. For completeness, this adjoint problem is given in Appendix B. 

The method consists first in expanding the solution of the nonlinear equations in 
series of the eigenmodes of the linear problem. The time-dependent coefficients are the 
so-called ‘amplitudes’ of the different modes of convection. The eigenmodes to be used 
here are the eigenmodes of set (3.1k(3.3) considered as an eigenvalue problem for the 
growth rate cr, when the Marangoni number is fixed and equal to Ma,. Clearly the 
smallest eigenvalue of this problem is zero and corresponds to the marginally stable 
convective mode. If the eigenmodes are assumed to form a complete set, one may 
write : 

where A,(t) are the amplitudes and ( u p ,  8,) denote the eigenmodes (of any parity EE, 
EO, OE or 00) of the linear eigenvalue problem for cr with Ma = Ma,. All the 
boundary conditions, except the Marangoni conditions at the upper surface, are 
automatically fulfilled if the unknown fields take the form (4.1). Moreover, the 
continuity equation (2.1) is also directly satisfied. The Marangoni conditions can, 
however, be taken into account by slightly modifying expression (4.1): indeed, the 
continuity equation and all the boundary conditions are satisfied by: 

Note that, for the forthcoming developments, it is worth assuming that the eigenmodes 
are ordered by decreasing growth rate CT, : up d CT* 6 0 if p > q. 

Introduce then this development (4.2) in the nonlinear equations (2.2k(2.3) for the 
velocity and temperature. Multiply (2.2) by u: and (2.3) by (Ma/Ma,)O$, where 
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(u; ,  0;) denotes an eigenmode, with eigenvalue CT,, of the adjoint eigenvalue problem 
(B 1)-(B 8) considered as an eigenvalue problem for the growth rate when Mu = Ma,. 
Add both expressions and integrate over the fluid volume. After performing 
integrations by parts and using the boundary conditions and the bi-orthogonality 
relations (B 9), one obtains the following evolution equations for the amplitudes A,(t): 

In this expression, e is the relative distance to threshold. It is defined as 

Ma - Ma, 
e =  

Mac . 
The matrices in (4.3) are given by 

(4.3) 

(4.4) 

The set (4.3) forms an infinite dimensional system of nonlinear ordinary differential 
equations for the amplitudes of the eigenmodes and is the basis of our nonlinear 
analysis. 

4.2. Reduction of the dynamics in the weakly nonlinear regime 

To be tractable, the infinite dimensional set (4.3) must be simplified and, in particular, 
it must be restricted to a finite number of equations. The use of a finite number of 
equations can be justified by noting that, in the weakly nonlinear regime, only a small 
number of eigenmodes are linearly unstable while all other modes have negative 
growth rates. It is convenient to share out the eigenmodes into two sets. The first set 
contains the ‘unstable’ eigenmodes which bifurcate in the vicinity of the threshold and 
which are thus actually unstable in the neighbourhood of e = 0. The e-value defining 
the bifurcation of the successive eigenmodes is easily obtained from (4.3). It is given by 

where e p  denotes the value of e at which the eigenmode p bifurcates. The ‘unstable’ 
eigenmodes are defined by an index running from 1 to some number N ,  which must 
be determined. 

The second set of eigenmodes is made up by the ‘stable’ eigenmodes whose linear 
growth rate remains negative in the weakly nonlinear regime. In the weakly nonlinear 
regime, this growth rate is given by 

These stable eigenmodes do not really participate in the dynamics of the system but 
they cannot be omitted since they represent the nonlinear response of the system to the 
growth of the unstable modes. These modes are generated by the quadratic interactions 
of the first unstable modes and their amplitude should be expressed as a quadratic 
expression in the amplitudes of the unstable modes. To be more explicit, equations 
(4.3) for the stable modes will be simplified in the following way. First, the term 
proportional to e in (4.3) may be disregarded with respect to .-, A ,  since e remains 
small in the weakly nonlinear regime and .-, is quite negative for a well-damped 

.-$ = .-,+t.T,(P,P). (44 
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eigenmode. Secondly, the time derivative of the amplitude is neglected since the stable 
modes do not participate in the dynamics of the system. Finally, the quadratic term 
may be restricted to a quadratic expression containing only the amplitudes of the 
unstable modes because, in the neighbourhood of threshold, the amplitudes of the 
unstable modes remain rather small and terms of order higher than 2 in these 
amplitudes may be neglected. The amplitudes of the stable modes can thus be written 
as : 

In (4.9), and subsequently, indices si denote stable modes while indices ui refer to 
unstable eigenmodes. 

Formula (4.9) shows also that the amplitudes ASi become smaller and smaller as 
index si increases since the corresponding growth rates become more and more 
negative. In particular, eigenmodes with sufficiently negative growth rate may be 
disregarded since their amplitude becomes negligibly small. In practice, the 
contributions of the stable modes will only be taken into account for si larger than N u  
but smaller than Nu + N,, for some integer N ,  which must also be evaluated. 

By introducing (4.9) with N u  < si 6 N u  + N ,  in (4.3), we obtain the final equations : 

+ c Tl(ui, uj ,  uk)  A,5 A,k + c K(ui? uj ,  uk, u L )  A ~ j  Auk (4' lo) 
u5. uk(unst) u j ,  ub, uz(unst) 

with ui = 1, ..., Nu. Note that, in (4.10), we have neglected terms proportional to 
€Au1 Auj and terms of order higher than 3 in the amplitudes of the unstable modes. The 
matrix T,  is given by: 

The above reduction of the dynamics of the system to a finite number of ordinary 
differential equations for the most unstable modes is the well-known adiabatic 
elimination of the slaved modes. The procedure has been widely developed in earlier 
works (see, for instance, Manneville 1990; Haken 1983; Rosenblat et al. 1982a,b; 
Foias et al. 1988) and will not be discussed further. It will now be applied to the study 
of Marangoni convection in no-slip rectangular vessels. Note that the values of the 
(numerous) coefficients T,, and T,  will not be given explicitly in the paper. However, 
these numbers could be provided on request to interested parties. 

4.3. Nonlinear Marangoni convection in rigid containers 
The application of the above method of reduction requires first the determination of 
the numbers N u  and N ,  of the unstable and stable modes. 

First, let us stress that we have basically in mind the determination of the bifurcation 
diagrams in the weakly nonlinear regime. Therefore, Nu and N ,  will be selected in 
order to provide a good description of the stable (i.e. observable) branches of the 
bifurcation diagrams in a range of e-values less than about 15 %. For these values of 
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E, = 15% 
us = - 10 

E, = 20% 
as = - 10 

(Nu  = 2 + 2 + 2 + 1  
N ,  = 9+7+7+7)  

( N ,  = 4 + 2 + 2 + 2  
N ,  = 7+7+7+6)  

4 t P )  0.0165 0.0165 
4 b J  0.0210 0.0215 
db,) 0.0274 0.0250 
E(b,) 0.111 0.102 

E, = 25% 

( N ,  = 5 + 2 + 2 + 2  
N ,  = 8+8+8+6)  

0.0166 
0.0204 
0.0254 
0.102 

a8 = - 12 
B, = 25% 

(Nu  = 5 + 2 + 2 + 2  
N , =  8+10+10+9) 

0.0166 
0.0203 
0.0251 
0.103 

= - 16 

TABLE 4. Positions of tp,  b,, b, and b, in the bifurcation diagram corresponding to (ul, a,) = (4.7,4.6) 
(see figure 8) as functions of e, and a,; these parameters are defined by the fact that the ‘unstable’ 
modes bifurcate for B < 6, and that the ‘stable’ modes taken into account have a growth rate CT > us. 
The values of N ,  and N ,  are written as sums of four numbers which give the numbers of eigenmodes 
of parity EE, EO, OE and 00. 

the relative distance to threshold and for Bi = 0, Pr = lo4, we have checked that the 
stable branches of the bifurcation diagrams were properly described by choosing the 
stable and unstable eigenmodes in the following way. First, the unstable modes are 
these which bifurcate for a-values less than 25 YO (and also those modes whose growth 
rates are less negative than the growth rates of the modes which bifurcate before 
t‘ = 25 YO ; an example of such a mode is the mode for which the velocity vanishes and 
the temperature is a function of z only: this mode never bifurcates and its growth rate 
is equal to -$’ (Parmentier et al. 1996)). Secondly, the stable modes are the modes 
with index higher than N u  and growth rate higher than the value - 12. Of course the 
values of Nu and N ,  determined using these conditions depend on the aspect ratios of 
the container. It is also worth stressing that the eigenmodes with growth rates larger 
than - 12 are correctly approximated by (3.4) for boxes with aspect ratios less than 
about 7 if the number of trial functions is fixed by (N, ,N, ,N,)  = (7, 7, 5). Note also 
that, before considering three-dimensional situations, we have checked the validity of 
the method by comparing with the results obtained by Dijkstra (1992) for two- 
dimensional containers: the agreement was found to be very good. For three- 
dimensional containers, the convergence of the procedure when N ,  and N ,  are 
increased has been checked in the following way. First of all, we have searched for a 
qualitative convergence of the bifurcation diagram, that is, we have checked that the 
number and the kind (EE, EO, OE or 00) of the stable branches appearing for e less 
than about 15 YO were not changed if Nu and/or N ,  were increased. Secondly, 
quantitative information about the convergence may also be obtained by computing 
the positions of some secondary bifurcation points for different values of N u  and N,. 
The results for a box of aspect ratio ( a , , ~ , )  = (4.7, 4.6) are reported in table 4. The 
positions of the turning point tp and the secondary bifurcation points b,, b, and b, (see 
figure 8) are given for different values of N ,  and N,. The table shows that choosing the 
unstable and stable modes as explained above gives a good approximation of the 
bifurcation diagram. 

We now examine the results corresponding to a representative sample of boxes with 
aspect ratios smaller than 8. The selected boxes are indicated with crosses in figure 2. 
The Biot number is fixed to 0 and the Prandtl number is equal to lo4. In order to avoid 
the degeneracy of the EO and OE modes in square geometries we study in the first 
subsection the case of quasi-square containers. These quasi-square containers are also 
more realistic from an experimental point of view since a perfectly square geometry can 
never be achieved in practice. 
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4.3.1, Quasi-square containers 
(a)  Quasi-square container with aspect ratios (al ,  a,) = (2.5, 2.4) 

The critical Marangoni number for (al, a,) = (2.5,2.4) is given by Ma, = 106.07 and 
the critical solution belongs to the EE class. In such a box, two modes with parity EE, 
one EO-mode, one OE-mode and one 00-mode bifurcate before e = 25 YO, so that Nu 
is equal to 5.  For conciseness and to recall the repartition between the four parity 
classes, we will write N ,  = 2 +  1 + 1 + 1. With the same notation, one has 
N ,  = 2+2+2+2 .  The final system describing the weakly nonlinear regime consists 
thus in five cubic 0.d.e. for the amplitudes of the five unstable modes. This set of 
equations will not be written explicitly but we shall determine the corresponding 
bifurcation diagram. The latter is obtained by using standard continuation techniques 
as described for instance in Seydel(l988). A complete bifurcation diagram should give 
the amplitudes of all the unstable modes as functions of the distance to the threshold. 
However, it is sufficient for our discussion to represent only the amplitude of the most 
unstable mode of each parity. Moreover, it would not be useful to represent all the 
unstable branches since they would make the pictures very intricate and also because 
these branches correspond to solutions which are not experimentally observable. In the 
graphs, we will use solid curves to represent stable solutions and dashed lines for 
unstable ones. The diagrams are also extrapolated to values of e a bit larger than 15 YO. 
Note, finally, that if some amplitude remains always equal to zero, its representation 
as a function of e is not given. 

The bifurcation diagram for a box of aspect ratios (a,,a,) = (2.5, 2.4) is given in 
figure 7. At the threshold, a transcritical bifurcation towards a solution made up by EE 
modes only can be observed. The width of the subcritical domain is equal to about 
8.3 YO. At e = 2.7 YO, there is a secondary bifurcation of the OE mode. In a progressive 
heating experiment, the real finite-amplitude perturbations make the system jump on 
the stable positive EE branch before reaching the threshold. For this solution, the 
motion sets in taking the form of a square cell in which the fluid rises at the centre. The 
convective pattern corresponding to point (a) in the bifurcation diagram is represented 
in figure 12(a). The structure corresponding to negative values of the EE amplitude and 
non-zero OE mode is not drawn because, in a progressive heating experiment, only the 
positive EE branch will be observed and also because the range of e for which these 
solutions are stable is rather small. 

In the same EE area of figure 2, we have also considered the box with (al ,  a,) = (4.2, 
4.1). We found a bifurcation diagram quite similar to that given in figure 7. However, 
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FIGURE 8. Bifurcation diagram for a quasi-square box of aspect ratios (ul, a,) = (4.7, 4.6). 

the convective pattern observed in a progressive heating experiment is different since 
one observes a unique square cell which is rotated by 45 YO with respect to the cell given 
in figure 12(a). This kind of convective pattern also appears in the box described 
hereinafter and a picture of the motion in this box is given in figure 12(c). 

(b)  Quasi-square container with aspect ratios (al, a,) = (4.7, 4.6) 
In the present example, the instability is nearly degenerate. The OE mode bifurcates 

first but the EO solution becomes unstable quite near the threshold. The numbers of 
unstable and stable modes are Nu = 5+2+2+2 and N ,  = 8+8+8+6.  The 
bifurcation diagram is given in figure 8. At the threshold, one has a subcritical 
bifurcation towards the OE mode but the subcritical domain is very small. The EE 
modes are non-zero for this solution, since they are generated by the quadratic self- 
interaction of the OE mode. The pattern corresponding to this branch (point b:  
E = 1.8 YO) is represented in figure 12(b). One main cell appears which is not located at 
the centre of the container. Two other small areas of weak upflow also appear in the 
left-hand corners of the box. This picture corresponds to a positive value of the 
amplitude of the first OE mode. A negative value of the OE-amplitude would produce 
a pattern which is the reflection of figure 12(b) with respect to x = +a1. It is important 
to note that this convective structure is quite different from that found from the linear 
approach (see figure 6c). This is due to the presence of the EE modes which are 
generated by the nonlinear evolution of the OE mode. The branch corresponding to 
this solutions ends up at a secondary bifurcation point on the branch originating from 
the bifurcation of the EE solution. At this point, the EE solution becomes stable and 
the observable pattern takes the form of a unique square cell with upflow in the centre. 
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FIGURE 9. Bifurcation diagram for a quasi-square box of aspect ratios (ul, a,) = (5.94, 5.9). 

This cell is represented in figure 12(c) for point (c)  in the diagram. For larger values 
of E ,  one observes another secondary bifurcation towards a solution made up by the 
superposition of the EE and 00 modes (point (d) ) .  On this branch, the convective 
pattern consists of two triangular cells with upflow at the centre of each cell. A picture 
of the structure is given in figure 12(d). This picture corresponds in fact to a box of 
aspect ratios (a,,a,) = (5.94, 5.95) in which such triangular cells also appear. In the 
bifurcation diagram, we have represented the (unstable) branch which arises at the 
bifurcation of the EO mode in order to show the quasi-degeneracy of the instability. 

We have also studied a slightly larger container in the same EO-OE domain. For 
(al ,  a,) = (5.4, 5.3), the bifurcation diagram presents the following general features. At 
threshold, the EO mode bifurcates subcritically to give a stable structure similar to 
figure 12(b) but rotated by 90". The OE mode bifurcates also subcritically quite near 
the threshold and gives rise to a pattern similar to figure 12(b). These EO or OE 
solutions do, however, not exist for large value of 6. For a distance to the threshold in 
the neighbourhood of 10 %, a four-square-cells solution, a two-triangular-cells pattern 
and a three-convective-cells structure coexist (figures 12d-12f). These three kinds of 
convective structures are also present in larger boxes and will be discussed in more 
detail later on. 

(c) Quasi-square container with aspect ratios (al ,  a,) = (5.94, 5.9) 
In figure 2, the point (a,,a,) = (5.94, 5.9) is in a black area where the 00 mode 

becomes first unstable. The bifurcation diagram for this container is given in figure 9 
(Nu = 7 + 5 + 5 + 5 and N ,  = 12 + 1 1  + 1 1  + 8). The bifurcation at threshold is 
subcritical with a very narrow domain of (unstable) subcritical convection. The EE 
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FIGURE 10. Bifurcation diagram for a quasi-square box of aspect ratios (ul, a,) = (6.9, 6.8). 

mode bifurcates very near threshold and, actually, the only non-conductive solution at 
c = 0 is the EE mode. This branch (point f) corresponds to a square cell with upflow 
at the centre and a narrow band of rising fluid along the sidewalls (see figure 12cf) for 
a similar convective pattern). The 00 branch originating at the threshold becomes 
stable for a positive but very small value of e. The convective pattern for point ( d )  on 
this branch is given in figure 12(d) and consists of two triangular cells with upflow at 
the centre of each cell. This structure results from the superposition of the unstable 00 
mode and the EE and 00 modes generated in the nonlinear regime. Figure 12(d) 
corresponds to a positive value of the amplitude of the first 00 mode. A negative value 
for this amplitude would give a similar structure but rotated by 90". Consider now the 
'negative part' of the EE branch. This branch becomes stable for c = 4.2%. The 
convective pattern for this stable branch is made up by four square cells similar to the 
configuration observed in figure 12(a). The pattern for point H is similar to that given 
in figure 12(h) which corresponds to a square box of aspect ratio 6.8. Another stable 
branch is also present in the bifurcation diagram. On this branch, modes of all parities 
are non-zero and the structure is the superposition of EE, EO, OE and 00 modes. In 
figure 12(e) is plotted the convective structure corresponding to point (e) in the 
bifurcation diagram. Three convective cells are clearly distinguished with one square 
cell in the lower left-hand corner and two other wedge-shaped cells. Of course, the 
square cell could also be found in other corners (the 00 amplitude may take both signs 
and, for each sign, the EO and OE amplitudes may also be positive or negative). 
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FIGURE 11. Bifurcation diagram for a quasi-square box of aspect ratios (a , ,~ , )  = (8.1, 8). 

( d )  Quasi-square container with aspect ratios (al, az)  = (6.9, 6.8) 
The critical eigenmode has parity EE for (a,,a,) = (6.9, 6.8). The numbers of 

eigenmodes to take into account are N u  = 9+8+8+6  and N ,  = 13+13+13+13. 
The bifurcation diagram is plotted in figure 10. The bifurcation at threshold is 
transcritical with a 0.29 % width subcritical domain. Near c = 0, the negative part of 
the first EE branch is stable but soon becomes unstable owing to the secondary 
bifurcations of the EO and OE modes. These stable solutions exist only in very narrow 
windows of 6 and could thus not easily be observed. Therefore, the convective structure 
is not represented. When the fluid layer is progressively heated, the system jumps onto 
the stable positive EE branch before reaching threshold. On this branch, the convective 
pattern for point (,f) takes the form given by figure 1 2 0 :  a square cell with upflow 
at the centre and a narrow band of rising fluid along the sidewalls. This solution 
becomes unstable for 6 = 3.5%and the system must jump onto another branch. For 
e > 3.4%, the negative EE branch becomes stable and the convection takes the form 
of four square cells (see figure 12(h) for point h). Note also that this branch is the only 
stable solution for sufficiently large values of e. Other stable solutions are also possible. 
These take the form of either a superposition of EO and EE modes or a superposition 
of OE and EE modes. The pattern corresponding to point (g)  in the bifurcation 
diagram consists of a three-cell solution as shown in figure 12(g). The three cells are, 
however, differently arranged to those in figure 12(e). The pattern corresponding to a 
positive value of the EO mode can be obtained by a reflection of figure 12(g) about 
y = fa,. Similarly, the OE-EE solutions are obtained by rotating by 90" in both 
directions the pattern of figure 12(g). The coexistence of nearly equivalent solutions for 
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FIGURE 12. Flow patterns in the nonlinear regime for quasi-square containers (Ra = Bi = 0, 
Pr = lo4). The iso-values of the vertical velocity w at mid-depth of the fluid layer are represented. The 
letter under each picture refers to corresponding points in the bifurcation diagrams. The plots (d), (e), 
( f )  and (h) also give approximate representations of the flow for the points labelled (d), (e), ( f )  and 
(h) in bifurcation diagrams for boxes with different dimensions. 
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FIGURE 13. Bifurcation diagram for a rectangular box of aspect ratios (a,,a,) = (3.2, 1.5). 

the EO and OE modes is of course to be related to the near-degeneracy of the 
corresponding eigenvalue. 

(e)  Quasi-square container with aspect ratios (a,, a,) = (8.1, 8) 
With aspect ratios (a,, a,) = (8.1, 8), the parameters (N?, N u ,  N,) = (7, 7, 5)  have 

turned out to be inappropriate for giving a good approximation of all eigenmodes with 
growth rate larger than -12. This is because many eigenmodes with different 
horizontal structures are nearly critical in such a large container. To obtain better 
results, we have increased the number of trial functions used for the horizontal 
dependence of the unknowns and have taken (Nz ,  N u ,  N,) = (8, 8, 4). The parameter 
N ,  has been given the value 4 in order for the calculations to remain within reasonable 
time limits. Of course, precision is lost in the vertical description of the convective 
patterns. The bifurcation diagram is given in figure 11 and corresponds to 
N ,  = 10+9+9+ 8 and Ns = 18 + 16+ 16+ 14. These values are determined by 
considering the modes which bifurcate for 6 less than 20% and which have a growth 
rate larger than - 10. Clearly, the bifurcation diagram is less precise than for other 
boxes and only the most important branches (i.e. which exist in large ewindows) are 
represented. At E = 0, a transcritical bifurcation towards a superposition of OE and EE 
modes can be observed. The pattern for point (i) is given in figure 12 (i) : three main cells 
are observed with a slow upwards motion along the left-hand sidewall. Other stable 
branches are also displayed in figure 11. The convective structures for points (5’) and 
( k )  are represented in figures 12(j) and 12(k). At point (51, the flow is made up by EE 
modes only and five convective cells are displayed, with a quasi-square cell in the 
middle of the container. In figure 12(k), the presence of four cells and two small areas 
of slowly rising fluid in two corners of the box can be observed. This pattern is the 
superposition of the 00 and EE modes. 

4.3.2. Rectangular containers 

Four peculiar rectangular boxes are considered in this paragraph. These boxes (see 
crosses below main diagonal in figure 2) are selected in order to provide a general 
overview on convection in ‘actually’ rectangular containers (a, and a, are ‘quite’ 
different). The first case (al ,  a,) = (3.2, 1.5) enables us to study the nonlinear evolution 
of a unique roll parallel to the longer sides of the box. The next two boxes 
[(a,,a,) = (5.4, 3.2) and (al, a,) = (6.6, 3.2)] are selected to study the competition 
between three or four rolls parallel to the shorter sides and the two rolls parallel to the 
longer ones which are nearly unstable at the threshold. The last cavity (al ,  a,) = (6.6, 
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FIGURE 14. Bifurcation diagram for a rectangular box of aspect ratios (ul, a2) = (5.4, 3.2) .  

5.2) illustrates the evolution of four linearly unstable rolls parallel to the shorter sides 
when three rolls parallel to the other sides are nearly critical at Ma = Ma,. 

(a) Rectangular container with aspect ratios (al, a,) = (3.2, 1.5) 
In a rectangular box with aspect ratios (a,,:,) = (3.2, 1.5), the linearly unstable 

mode belongs to the EO class and the convective pattern at the threshold takes the 
form of a unique roll parallel to the longer sides of the container. The bifurcation 
diagram is given in figure 13 and one observes a supercritical bifurcation at threshold. 
The solution is made up by the superposition of the EO and EE modes generated by 
the nonlinear evolution of the critical mode. At c = 22%, the EE solution becomes 
stable and the EO branch disappears. The patterns corresponding to points (a) and (b) 
in figure 13 are represented in figures 17(a) and 17(b), respectively. Figure 17(a) clearly 
shows that the one-roll solution of the linear analysis (figure 5c) is modified by the 
presence of the EE modes. In figure 17(b), two rolls parallel to the shorter sides of the 
container are displayed. 

(b) Rectangular container with aspect ratios (al, a,) = (5.4, 3.2) 
The bifurcation diagram for (a,, a,) = (5.4, 3.2) is plotted in figure 14. A subcritical 

bifurcation towards the OE-solution appears at the threshold. The corresponding 
pattern (point c) is represented in figure 17(c). This pattern loses stability at c = 2.3 YO 
where the EE branch becomes stable. The convective pattern on this EE branch (point 
e) is formed by two 'horizontally compressed' square cells and is similar to figure 17 (e) 
(which corresponds to a box of different aspect ratios). This branch is the only stable 
solution for E larger than 14%. The negative part of the EE branch is also stable. The 
pattern for point D is given in figure 17(d) and is made up by two rolls parallel to the 
longer sides of the box. Note that this solution could not appear in a progressive 
heating experiment and becomes unstable for E larger than 14%. 

(c) Rectangular container with aspect ratios (a,, a,) = (6.6, 3.2) 
The linear convective pattern corresponding to (al, a,) = (6.6, 3.2) consists of four 

rolls parallel to the shorter sides of the container. The bifurcation diagram for this box 
is plotted in figure 15. At c = 0, there is a transcritical bifurcation. The supercritical 
branch gives stable solutions for only a very narrow band of E. The stable solution on 
which the system jumps before the threshold is the negative part of the EE branch. The 
pattern for this solution (point e) is represented in figure 17(e) where two square cells 
are observed. These square cells are in fact the superposition of the four linearly 
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unstable rolls parallel to y and the two rolls parallel to x which are nearly critical and 
generated by the nonlinear evolution of the critical mode. 

( d )  Rectangular container with aspect ratios (al ,  a,) = (6.6, 5.2) 
Figure 16 is the bifurcation diagram for (a,,a,) = (6.6, 5.2). The bifurcation at the 

threshold is transcritical but the subcritical domain is nearly vanishing. The pattern for 
point (f) on the stable negative EE branch (on which the system would jump before 
reaching the threshold) is that of figure 1 7 ( f ) :  four convective rolls parallel to y 
appear, with upflow in the middle of the container. Rising fluid also appears along the 
sidewalls parallel to y .  Figure 17(g) represents the motion for point (g) and shows the 
birth of the four square cells observed in figure 12(h). On this branch, a secondary 
bifurcation gives rise to an 00-EE solution which is represented in figure 17(h) for 
point (h). This picture presents evident similarity with the two-triangular-cells solution 
of figure 12(d). 

4.4. Discussion and comparison with other works 
4.4.1. Summary of the results 

In $4.3, we examined Marangoni convection in rigid rectangular boxes within the 
weakly nonlinear regime. We have studied the stable motions which are likely to be 
observed for t: extending up to about 15 or 20 %. We have not analysed in detail stable 
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gives an approximate representation of the flow for the point labelled (e) in the bifurcation diagram 
of figure 14. 
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solutions which exist only over a very narrow window in c because these solutions 
could not easily be observed in experiments. 

In square containers, the main results are summarized in table 5.  For small boxes 
with aspect ratios between 2.4 and 4.4, the convective pattern appearing above the 
threshold is a unique square cell filling up the box and with the fluid flowing up at the 
centre of the cell. The borders of the cell may be either parallel to the sidewalls (small 
containers) or form a 45" angle to the sidewalls (larger boxes). The bifurcation at the 
threshold is transcritical, which means that the motion sets in with a preferred 
direction. This property of the primary bifurcation is expected for EE critical 
eigenmodes and will be observed in all white areas of figure 2. 

For the EO-OE region of figure 2 with aspect ratios between 4.6 and 5.6, the stable 
pattern at threshold is the superposition of EO or OE modes and the EE modes (figure 
126) but the corresponding structure becomes unstable for rather small values of 6 .  In 
small containers (a, z 4.6), the unique stable structure is then a square cell. For larger 
values of c,  one has a secondary bifurcation towards a two triangular cells structure. 
The situation is different in larger containers (a, z 5.3) where several stable structures 
may coexist for a given value of the distance to threshold. One can observe four square 
cells (EE solution), two triangular cells (00-EE solution) or a three-cell pattern 
(superposition of eigenmodes of all parities). The three-cell solution consists of a square 
cell in a corner and two wedge-shaped cells filling symmetrically the remainder of the 
box. The primary bifurcation point for these EO or OE modes is a pitchfork 
bifurcation because flows with opposite signs are related by reflection about one of the 
medians of the box. The bifurcation is subcritical but the subcritical domain is quite 
small. Recall that in perfectly square boxes, the bifurcation is degenerate. 

For a square box with aspect ratio near 5.9 (00 area in figure 2), the theory predicts 
the coexistence of the different stable branches corresponding to two, three and four 
cells. In the immediate neighbourhood of threshold an EE solution with one square 
cell and rising fluid along the walls is displayed (figure 12f). 

For 6.2 < a, < 7.2, the critical mode has parity EE and the bifurcation is 
transcritical. For c < 3.5 YO, a square cell and a ring of rising fluid along the sidewalls 
is predicted (figure 12f). Farther from the threshold, a three-cell solution (figure 12g) 
and a four-square-cell pattern (figure 12h) are displayed. The form and position of the 
three cells are, however, completely different from that in smaller boxes. Note also that 
the triangular cell pattern has disappeared and that the four square cells are the only 
stable solution for c larger than about 11 %. 

In a box of aspect ratio 8, a stable five-cell solution is found with a central square 
cell whose borders form a 45" angle with the sidewalls. A four-cell pattern and a three- 
cell solution with an additional upflow along a sidewall and another EE-00 structure 
are also observed. 

It can thus be stated that the number of cells in square boxes increases progressively 
with the aspect ratio but it is also important to emphasize that solutions with different 
numbers of cells usually coexist in large enough vessels (see table 5) .  Note also the 
evolution in figures 12(b), 12(g) and 12(i) which correspond to superpositions of EE 
and EO or OE modes. In figure 12(b), one main cell appears with two small upflows 
in two corners. In figure 12(g), these upflows have grown to give rise to two cells 
symmetric with respect to a median. In figure 12(i), an additional upflow area along 
a wall is observed. 

Concerning the rectangular boxes, we have only examined some particular aspect 
ratios. In a container for which the linearly unstable pattern is a roll parallel to the 
longer sides of the box, we saw that this structure is progressively transformed when 
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TABLE 5. Stable convective patterns in quasi-square containers. The first column gives the 
approximate aspect ratio. The kind of structure is described in the second column (S: square cell with 
upflow in the centre, index 45": the borders of the cell form a 45" angle to the walls, C: cell, H: hybrid 
cell, T :  triangular cell, W: wedge-shaped cell, R, : upflow ring along the walls). Possible coexistences 
of solutions are indicated by vertical lines. The last column gives the range of e in which the branches 
corresponding to the different structures are stable. 

c is increased into rolls parallel to the other sides (figure 17a, b). In the general case 
where rolls parallel to the shorter sides of the containers are linearly unstable, several 
cases were analysed. For (al, a,) = (5,.4, 3.2), three rolls are linearly unstable. The 
primary bifurcation of the OE mode is subcritical but this structure becomes unstable 
for rather small e and a two square cells structure appears (figure 17e). A pattern with 
two rolls parallel to the longer sides is also stable but could not be reached if the 
temperature gradient is progressively increased from the conductive state. For 
(a,,a,) = (6.6, 3.2), the motions starts, before threshold, by a jump onto the branch 
corresponding to two square cells. These square cells are the superposition of the four 
linearly unstable rolls and the two rolls parallel to the longer sides which bifurcate quite 
near threshold and are generated by the nonlinear evolution of the critical mode. In a 
box with (al, a,) = (6.6, 5.2), the critical eigenmode consists of four rolls parallel to y .  
This structure remains stable in the weakly nonlinear regime with either upflow or 
downflow at the centre of the box. The structure with upflow at the centre (and along 
the sidewalls) is, however, more likely to appear, owing to the transcritical character of 
the primary bifurcation. The pattern with downflow at the centre shows the birth of the 
four square cells structure. In this box, the two square cells are not observed any more. 
A secondary bifurcation towards an asymmetric solution (figure 17h) is also displayed. 
The pattern in this case is similar to the two triangular cell solution obtained in square 
boxes. 
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4.4.2. Modal interactions and comparison with Rosenblat et al. (1982b) 
It is interesting to study the modal interactions in order to better understand the role 

of rigid lateral walls on convection. This discussion allows us also to emphasize the 
difference between the present work and that of Rosenblat et al. (1982b) who used 
the approximation of slippery sidewalls. 

A very important consequence of the presence of rigid walls is that the quadratic self- 
interaction of a mode generates all the EE modes, and not only some of them as for 
slippery walls. If one considers for instance a three-roll marginally stable eigenmode, 
its nonlinear self-interaction generates the six-roll eigenmode in slippery boxes while, 
in a rigid box, all the eigenmodes with an even number of rolls (2, 4, 6, 8, ...) are 
excited. This is a consequence of the rigidity of the sidewalls because the vanishing 
velocity at the walls gives rise to a component of the motion in the whole box and the 
self-interaction of this component may generate all even solutions. A direct 
consequence of this property is the transcritical character of the bifurcations of the EE 
modes. Indeed, the quadratic self-interaction of an EE mode re-generates this EE mode 
and a quadratic term appears in the evolution equation of the amplitude of this mode. 
On the other hand, the primary bifurcation points are pitchforks in slippery 
containers. This difference can easily be understood. Consider for instance two rolls 
becoming unstable in a slippery box. Since the boundary conditions along the sidewalls 
parallel to the rolls and the boundary conditions at the border between the rolls are the 
same, the direction of the flow within the system makes no difference. In contrast, 
owing to the vanishing of the velocity on the walls, it is not equivalent, in a rigid box, 
to have a two-roll pattern with upflow at the centre and downflow along the walls or 
to have motion of the opposite sign. This proves clearly that the absence of transcritical 
bifurcations for even solutions in an artefact of the slippery walls assumption. 

The importance of rigid walls may also be emphasized by reconsidering the 
container with aspect ratios (a,, a,) = (6.6, 3.2). We know from the linear analysis that 
the convective structure at threshold is made up of four rolls parallel to the shorter 
sides of the container. In a rigid box, the vanishing velocity at the ends of the four rolls 
gives rise to motion along the axes of the rolls and the quadratic self-interaction of this 
motion may then generate the two rolls parallel to the longer sides so that the setting 
of square cells is possible. With slippery walls, a four-roll mode generates a mode with 
eight rolls parallel to the shorter sides of the box but it does not excite the two rolls 
parallel to the other sides. When the interactions between the two-roll and the four-roll 
modes are taken into account in slippery boxes, one obtains amplitude equations 
taking the form of equations (5.15) of Rosenblat et al. (1982b), with no quadratic 
terms. The corresponding bifurcation diagram is given in figures 10 or 11 of Rosenblat 
et al. and could not yield square cells directly as in our figure 15, but only after a 
secondary bifurcation. This example also stresses the importance of the three- 
dimensional effects generated by rigid sidewalls which are absent in slippery boxes. 

A direct comparison of our work and that of Rosenblat et al. is not an easy task since 
these authors present only some results above threshold. Rosenblat et al. examine the 
problem of nonlinear convection only in very small containers with a2 = 1 and a,  
smaller than about four. As an example, we have considered the competition between 
a one-roll solution and a two-roll solution in a rigid box to compare our bifurcation 
diagram with figures 8 and 9 of Rosenblat et al. We have found rather similar 
bifurcation diagrams and the only difference was the transcritical bifurcation of our 
two-roll mode, with a very small subcritical domain. This similarity in the case of very 
small cavities originates in the fact that the nonlinearly generated modes are quite 
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damped in both approaches. The more realistic case of larger vessels was not 
considered by Rosenblat et al. and a direct comparison is thus not possible. However, 
it is our opinion that the slippery walls assumption is not very appropriate for 
describing convection in boxes because the modes which are generated in the nonlinear 
regime as well as their interactions are quite different from those observed in the case 
of realistic rigid walls. In particular, weakly damped modes are generated in (large) 
rigid boxes which are not present in slippery containers. 

Another consequence of these modal interactions in rigid boxes is the difference 
between the convective structures at threshold and in the nonlinear regime. In slippery 
boxes, the modes which are generated by the nonlinear interactions of the marginally 
stable modes are strongly damped. As a consequence, their amplitudes remain quite 
small and do not influence greatly the convective structure. In rigid boxes, one observes 
the emergence of some modes which are nearly critical and these are thus not well 
damped. These modes may thus not be adiabatically eliminated. Their amplitude is not 
small and they can greatly modify the convective structure, even in the immediate 
neighbourhood of threshold. This result is clearly illustrated by comparing figures 6 
and 12 or figures 5 and 17. Note also that the difference between the linear and 
nonlinear structures is still reinforced by the fact that the bifurcations are transcritical 
or subcritical (in sufficiently large containers). For this reason, convection always sets 
in with finite amplitude in rigid boxes. 

4.4.3. Comparison with the experiments of Koschmieder & Prahl(l990) 
It is also important to compare our results with experimental observations. In that 

respect, nice experiments have been performed by Koschmieder & Prahl (1990) in 
square boxes. It is, however, worth stressing that, for several reasons, the comparison 
is mainly qualitative. First, the experiments of Koschmieder & Prahl have been carried 
out on Earth so that gravity effects are not strictly absent. Moreover, the experimental 
Biot numbers are different from zero : they are of the order of 1.9 for small containers 
and 0.35 for larger ones (Dauby 1994). Finally, the Prandtl number for the silicone oil 
used in the experiments is about lo3 while the Prandtl number used in our calculations 
is lo4. Nevertheless, we think that a comparison between theory and experiments is 
relevant because, as shown by the linear analysis, the values of the Rayleigh and Biot 
numbers are not of great importance for the nature of the convective structure 
appearing at threshold. Regarding the Prandtl numbers, we think that both values are 
compatible with an infinite Prandtl number hypothesis. Note also that, since the 
experimental critical parameters are not known very accurately (errors are of the order 
of 15%), we shall not compare the experimental and theoretical values of these 
quantities and we shall focus on the convective patterns. In view of the above remarks, 
we obtained very good agreement with Koschmieder & Prahl’s experiments. Indeed, all 
the convective patterns observed by these authors in square boxes with aspect ratios 
smaller than eight (see reproduction of their results in figure 18) were found as stable 
solutions of our model (table 5). For a square container of aspect ratio 2.4 (figure 12a), 
the convective structure predicted by our approach is quite similar to the pattern 
observed by Koschmieder & Prahl in a square box of aspect ratio 1.82 (figure 18a), 
with a unique square cell in which the fluid rises at the centre. Our figure 12(d) for a 
square box of aspect ratio 5.9 is also very similar to the two triangular cells obtained 
by these authors in a box of aspect ratio 5.68 (figure 18b), with two main upflow areas 
in the middle of the cells and downflow along the diagonal. The three-cell, four-square- 
cell and five-cell patterns observed in boxes of aspect ratios 6.16, 6.36 and 8.4 (figures 
18c, d and e) are in agreement with the structures presented in figures 12(e), 12(h) and 
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FIGURE 18. Reproduction of figure 2 of Koschmieder & Prahl(l990): patterns in a square container. 
(a) One-cell solution: Ma = 380, Ra = 228, a1 = 1.82. (b) Two-cell solution: Ma = 54, Ra = 33, 
a, = 5.68. ( c )  Three-cell solution: Ma = 80, Ra = 42, a, = 6.18. ( d )  Four-cell solution: Ma = 78, 
Ra = 38, a,  = 6.36. ( e )  Five-cell solution: Ma = 67, Ra = 19, a, = 8.4. ( f )  Six-cell solution: 
Ma = 72, Ra = 22, a, = 8.08. ( g )  Eight-cell solution: Ma = 63, Ra = 16, a, = 8.75. 
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12(i). Note also that, as in our theoretical model, Koschmieder & Prahl observed 
multiple stable patterns. For instance, in a box of aspect ratio 8.08, they saw either five 
or six convective cells. Finally, it is interesting to mention that the similarity between 
the observations of Koschmieder & Prahl and our theoretical predictions usually 
occurs not very near threshold (table 5). The patterns of Koschmieder & Prahl are thus 
probably not critical structures. 

On the other hand, it is interesting from an experimental point of view to estimate 
the magnitude of the velocity in the weakly nonlinear regime. For a relative distance 
to threshold equal to about 5 % ,  the maximum vertical velocity at mid-depth of the 
layer is usually of the order of 1 in non-dimensional units (figures 12 and 17). For a 
1 mm deep layer of DC200 Silicone oil (Koschmieder & Biggerstaff 1986), this 
corresponds to a velocity of about lo-’ mm s-l ,  which is actually in the range of 
current observations. 

4.4.4. Comment on Dijkstra’s (1995b, c) papers 
The present results may also be compared with the numerical work of Dijkstra 

(1995 b)  which contains a nonlinear approach to Marangoni instability based on 
numerical algorithms. Dijkstra’s method is not limited to the weakly nonlinear regime 
as in our work and should probably deal more easily with systems far from threshold. 
A direct comparison with Dijkstra’s analysis is not easy because we do not consider 
containers with exactly the same aspect ratios. Nevertheless, we have found that figure 
3 for a, = 4 in Dijkstra (19953) is quite similar to the bifurcation diagram that we 
obtain for (a,,a,) = (4.2, 4.1), with the same stable convective pattern and the same 
order of magnitude for the velocity. In larger vessels, the agreement is less satisfactory, 
even though we recover several convective patterns presented by Dijkstra. For a 
container with aspect ratio 6 (figures 5 and 6 in Dijkstra 1995b), our results are at 
variance because, as already mentioned in 83.2, Dijkstra did not consider the proper 
critical eigenmode. Moreover, we think that the bifurcation of the mode represented in 
figure 6(b)  of Dijkstra is not a degenerate one, as claimed by the author. These are 
probably the reasons why Dijkstra did not obtain the branch originating at point a of 
his figure 5. 

In a third paper, Dijkstra (1995~)  extends the work described above by studying the 
formation of hexagonal convective patterns in large square boxes (aspect ratios 
between 7 and 13). Comparison with this study is not possible at the present stage of 
our study because our calculation codes are limited to boxes with aspect ratios smaller 
than about eight. 

5. Conclusions 
Marangoni instability in rectangular containers with realistic rigid walls has been 

investigated. Both the linear and the weakly nonlinear problems have been discussed 
for a large Prandtl number (Pr = lo4). One of the main successes of the present analysis 
is a theoretical interpretation of Koschmieder & Prahl’s experiments. We have been 
able to recover all the convective patterns observed by these authors for aspect ratios 
smaller than eight. The experimental patterns with six or eight cells (figures 18fand 
18g) could also probably be obtained from our model but this would require rather 
expensive calculations. As a continuation of this work, it is intended to reproduce the 
above analysis in circular containers (see Zaman & Narayanan 1996 for a linear 
study) and to consider the influence of non-vanishing Rayleigh and/or Biot numbers 
in the nonlinear regime. It would also be interesting to examine the influence of the 
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Prandtl number. In particular, the change of direction of the flow for very small Pr 
predicted in hexagonal convection (Dauby et al. 1993; Parmentier et al. 1966) should 
also be checked in finite rigid containers. Other new results have also been obtained for 
rectangular containers and experimental observations would be welcome. 
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Appendix A 
In this appendix, we present the numerical method used to solve the linear eigenvalue 

problem. For computations convenience, the following coordinate transformation is 
performed : 

x’ = 2x/a1- 1, y’ = 2y/a,- 1, z’ = 22- 1, (A 1) 

which allows us to replace the real fluid volume by the cube [ - 1,1] x [ - 1,1] x [ - 1,1]. 
As a consequence, the components of the nabla operator are now V = (2/aIi3/ax, 
2/a ,  2/ay, 2a/az) while the boundary conditions are expressed at x, y ,  z = 1. 

The trial functions which appear in (3.4) are chosen as 

where a,, ay and a, denote derivatives with respect to x, y and z respectively. The definite 
expressions for the functionsf, V, g, m and n are given below. It is easily verified that, 
with the choice (A 2)-(A 8), the incompressibility condition (3.1) is automatically 
fulfilled. 

Because of the symmetry between the ‘length’ and the ‘width’ of the box, the same 
set of trial functions is used to define the x- and y-dependences of the velocity 
component u and the y- and x-dependences of the velocity component v. Similarly, the 
x- and y-dependences of the temperature are given in terms of a single set of functions 
mi. 

Since the box and boundary conditions are symmetric with respect to the planes 
x = 0 and y = 0, it is sufficient to consider horizontal trial functionsf, V and m which 
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are either symmetric or antisymmetric with respect to these planes, that is even or odd 
horizontal trial functions with respect to x or y. Because of equations (3.2) and (3.3), 
the functions w, 8, au/ax and i3u/i3y have the same parity in x and y and the 
classification of the trial functions may be done in terms of the parity of the mi only. 
The four different classes of solutions will be referred to as the 00, OE, EO and EE 
solutions. The first and second letter of each symbol refers to the parity of the x- and 
y-dependences of the horizontal temperature trial functions respectively. These letters 
E and 0 also characterize the parity of the number of rolls making up the solution and 
normal to the x- and y-axes respectively. Consider for instance an even function mi(x). 
The corresponding fi(x) are odd functions and the sign of the horizontal velocity 
component u is changed an odd number of times along the x-axis. This gives rise to an 
even number of rolls normal to x. It follows that knowledge of the class of the critical 
solution only provides some preliminary information about the pattern of the 
convective cells at threshold. 

The functionsf, V, G ,  m and n are selected in order that (A 2)-(A 8) form a complete 
set but also in such a way that most of the boundary conditions are a priori satisfied. 
These requirements may be satisfied by considering products of Chebyshev polynomials 
and other polynomials allowing to take the boundary conditions into account. 
Explicitly, one has 

f i ( 5 )  = K2 - 1)' K - 1 ( 5 ) 7  

K(5) = (C2- 1) Ti-1(5>, 
gk(z) = (z+ l)'(z- l)  Tk-l(z>, 

(A 9) 

(A 10) 

(A 11) 

(6'- 1) qj(LJ d[ for i = 2j+ I 

mi(5) = for i =  2 (A 12) 

= (z+ 1) G-1(4> (A 13) 

where stands for x or y. The T are the Chebyshev polynomials. Even (odd) indices 
i correspond to odd (even)fi or 

With this choice for the trial functions, it is easy to verify that the zero-velocity 
condition on rigid walls, the adiabaticity conditions on the lateral walls as well as the 
fixed temperature condition at the bottom of the box are automatically satisfied. The 
vanishing of w at the top surface is also ensured and only the Marangoni and Biot 
conditions are not a priori verified by the trial functions. 

The spectral Tau method consists in introducing the general form (3.4) with 
(A 2)-(A 13) in (3.2)-(3.3) and boundary conditions (2.10)-(2.11). The algebraic 
equations are obtained by projection on the trial functions, that is by multiplying the 
equations by the trial functions and integrating the products over the fluid volume. 

First, the field equations (3.2)-(3.3) are projected on (v&,O) for p = 1, ..., N,, 
q = 1, . . . , Nu and r = 1 , . . . , N, - 1. This results in 

functions and even (odd) mi. 

for p = 1, ..., N,,q = 1, ..., N Y , r  = 1, ..., N,-  1, (A 14) 
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where (. . . ) denotes the integral over the fluid volume. Note that the pressure term has 
been omitted because, after integrations by parts and use of the a priori satisfied 
boundary conditions for the velocity, one can check that ( v  .Vp) = 0. A similar 

q =  1 ,...,Nu a n d r =  1 ,..., N,-1. 
The Marangoni condition is taken into account by projection of (2.11) on the 

horizontal velocity trial function at z = 1 for p = 1 ,  .. ., N,, q = 1,  ..., Nu, r = N,. One 
obtains 

equation is obtained by projecting the field equations on (vpqr,O) 8qr for p = 1, ..., N,, 

for p = 1 ,  ..., N,,q = 1, ..., N Y , r  = N ,  (A 15) 

and a similar expression for the projection on the second component of velocity. The 
following notation is used: 

V, = (2/a, a/ax, 2/a, a/ay) and (a(x, y, z)),=, = SfldxS;ldYa(x,Y,z = 1). 

The field equations (3.2)-(3.3) are also projected on (0, epqr) for p = 1 ,  . . . ,N, ,  
q = 1, ...,Nu and r = 1 ,  ..., N,-1. It is found that 

for p = 1 ,  ..., N,,q = 1,  ..., Nu,r  = 1 ,  ..., N,-  1 .  (A 16) 

The projection of the Biot condition (2.10) on Opqr at z = 1 and for p = 1, ..., N,, 
q = 1 ,  ..., Nu, r = N ,  yields 

for p = 1 ,  ..., N,,q = 1 ,  ..., N U , r  = N,. (A 17) 

The set of equations (A 14t(A 17) forms an algebraic eigenvalue problem for the 
Marangoni number Ma if the Rayleigh number Ra is fixed or for the Rayleigh number 
if Ma is fixed. Formally, this system may be written as 

where h stands for the eigenvalue parameter (s, Ra or Ma). The first 'row' of equation 
(A 18) corresponds to (A 14b(A 15) and the second to (A 16)-(A 17). The quantities 
A ,  B and C are vectors whose components are Ailk, Bijk and Ciik respectively. The 
dimensions of A ,  B and C are N = N ,  x Nv x N, so that the dimension of the 
eigenvalue problem is 3 x N ,  x Nu x N,. The numerical calculations have been 
performed by using the fortran NAG F02BJF procedure. 

Let us finally recall that the actual resolution of the eigenvalue problem is carried out 
by solving four algebraic eigenvalue problems (A 18), which correspond to the four 
classes of solutions defined above. The critical Ma, or Ra, characterizing the onset of 
convection is obtained as the minimum of the four h corresponding to these classes. 
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Appendix B 

linear eigenvalue. These relations can be written as 
In this Appendix, we present the equations and boundary conditions of the adjoint 

V2v* -Up* + 8*e, = vPr-lv*, 
u*v* = 0, 

V28* + Ra W* = re* ,  

v* = 8* = 0 at z = 0, 

ae* aw* 
aZ aZ -+BiO*+Ma- = 0 at z = 1, 

ae* 
ax 

v * = - = O  at x = O a  7 1, 

ae* 

aY 
v* = - = O  at y =  O,a,, 

where the starred quantities refer to the adjoint problem unknown fields. 
Let us recall that the direct system (3.1b(3.3) and its adjoint have the same 

eigenvalues. Moreover, if both systems are considered as eigenvalue problem for the 
growth rate s, when the Rayleigh and Marangoni numbers are fixed, the following 
biorthogonality relations between the eigenmodes of both problems are satisfied : 

(rp - rg) (8; 8, + Pr-' u;f: - v,) = 0. (B 9) 

In this formula, indices p and q characterize eigenmodes of the direct and adjoint 
problems respectively. 

The adjoint system is solved by means of a spectral Tau method, in complete analogy 
with the direct problem. The normalization condition is also identical. 

REFERENCES 

BENARD, H. 1900 Rev. Gen. Sci. Pure Appl. 11, 1261. 
CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A. & ZANG, T. A. 1988 Spectral Methods in Fluid 

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon. 
DAUBY, P. C. 1994 InstabilitCs thermocapillaires et effets de confinement. PhD thesis, University of 

Libge, Belgium. 
DAUBY, P. C. & LEBON, G. 1994 Series on Advances in Mathematics for Applied Sciences (ed. S .  

Rionero & T. Ruggeri), vol. 23, pp. 118-123. World Scientific. (Proc. of the VII Intl Conf. on 
Waves and Stability in Continuous Media, Bologna, Italy, 4 9  October 1993). 

DAUBY, P. C., LEBON, G. & COLINET, P. 1996 Series on Advances in Mathematics for Applied 
Sciences. World Scientific. (Proc. of the VIII Int. Conf. on Waves and Stability in Continuous 
Media, Palermo, Italy, 9-15 October 1995). 

Dynamics. Springer. 

DAUBY, P. C., LEBON, G., COLINET, P. & LEGROS, J. C. 1993 Q. J .  Mech. Appl. Maths, 46, 683. 
DAVIES-JONES, R. P. 1970 J.  Fluid Mech. 44, 695. 
DAVIS, S. H. 1967 J. Fluid Mech.30, 465. 
DIJKSTRA, H. A. 1992 J .  Fluid Mech. 243, 73. 
DIJKSTRA, H. A. 1995a Microgravity Sci. Technol. 7, 307. 



64 

DIJKSTRA, H. A. 1995b Microgravity Sci. Technol. 8, 70. 
DIJKSTRA, H. A. 1995c Microgravity Sci. Technol. 8, 155. 
ECKHAUS, W. 1965 Studies in Nonlinear Stability Theory. Springer. 
FINLAYSON, B. A. 1972 The Method of Weighted Residuals and Variational Principles. Academic. 
FOIAS, C., JOLLY, M. S., KFMWKIDIS, I. G., SELL, G. R. & TITI, E. S. 1988 Phys. Lett. A 131, 433. 
HAKEN, H. 1983 Advanced Synergetics. Springer. 
KOSCHMIEDER, E. L. 1993 Binard Cells and Taylor Vortices. Cambridge University Press. 
KOSCHMIEDER, E. L. & BIGGERSTAFF, M. I. 1986 J. Fluid Mech. 167, 49. 
KOSCHMIEDER, E. L. & PRAHL, S. A. 1990 J. Fluid Mech. 215, 571. 
LEBON, G. & PEREZ-GARC~A, C. 1980 Bull. Classe Sci., Acad. R.  Belg. 64, 520. 
LUIJKX, J. M. & PLATTEN, J. K. 1981 J. Non-eguilibr. Therm. 6, 141. 
MANNEVILLE, P. 1990 Dissipative Structures and Weak Turbulence. Academic. 
NIELD, D. A. 1964 J. Fluid Mech. 19, 341. 
PARMENTIER, P., REGNIER, V., LEBON, G. & LEGROS, J.-C. 1996 Phys. Rev. E 53 (to be published). 
PEARSON, J. R A. 1958 J. Fluid Mech. 4, 489. 
PELLEW, A. & SOUTHWELL, R. V. 1940 Prov. R. SOC. A 176, 312. 
PLATTEN, J. K. & LEGROS, J. C. 1984 Convection in Liquids. Springer. 
RAYLEIGH, LORD 1916 Phil. Mag. 32, 529. 
ROSENBLAT, S., DAVIS, S. H. & HOMSY, G. M. 1982a J.  Fluid Mech. 120, 91. 
ROSENBLAT, S., HOMSY, G. M. & DAVIS, S. H. 1982b J. Fluid Mech. 120, 123. 
SEYDEL, R. 1988 From Equilibrium to Chaos. Elsevier. 
TAKASHIMA, M. 1970 J. Phys. SOC. Japan 28, 810. 
VIDAL, A. & ACRIVOS, A. 1966 Phys. Fluids 9, 615. 
VOOREN, A. I. VAN DE & DIJKSTRA, H. A. 1989 Comput. Fluids 17, 467. 
WINTERS, K. H. & PLESSER, TH. 1988 Physica D 29, 387. 
ZAMAN, A. A. & NARAYANAN, R. 1996 J.  Colloid Interface Sci. 179, 151. 

P. C. Dauby and G. Lebon 




